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- Reaching a real “full self driving” system (eyes-off)

- While maintaining a sustainable business

How to Solve Autonomy

* Subject to defined Operational Design Domain and products specifications



Sensors AI Approach Cost Modularity
Geographic 
Scalability

MTBF

Waymo Lidar-centric CAIS ?

Tesla Camera only End-to-end ?

Mobileye Camera-centric CAIS ?

How to Solve Autonomy



Sensors AI Approach Cost Modularity
Geographic 
Scalability

MTBF

Waymo Lidar-centric CAIS ?

Tesla Camera only End-to-end ?

Mobileye Camera-centric CAIS ?

Which is more likely 
to succeed?

How to Solve Autonomy



Premise Reality

Unsupervised data alone can reach sufficient 
MTBF

Glue code shifted to offline
Rare & correct vs. common & incorrect

“AV alignment” problem

Really?
- Calculator
- Shortcut learning problem
- Long tail problem

End-to-End Approach

No glue code



“No Glue Code”: AV Alignment Problem

End-to-end aims to maximize 𝐏 𝒚 𝒙 where 𝒚 is the future trajectory human would take, 

denoted 𝒚, given the previous video, denoted 𝒙

This learning objective prefers 'common & incorrect' over 'rare & correct’

Examples: 

1. Most drivers slow down at a stop sign but do not come to a full stop

- Rolling stop ≡ common & incorrect

- Full stop ≡ rare & correct

2. “Rude drivers” that cut in line

3. Reckless drivers 

This is why RLHF is used in LLMs: the reward mechanism differentiates between ‘correct’ and ‘incorrect’

Glue code shifted to offline



End-to-end learning from data often misses important 
abstractions and therefore doesn’t generalize well

Example
Learning to multiply 2 numbers, a task where even the 
largest LLMs struggle

Can Unsupervised Data Alone Reach High MTBF?
Calculators

https://x.com/yuntiandeng/status/1836114401213989366



End-to-end learning from data often misses important 
abstractions and therefore doesn’t generalize well

Example
Learning to multiply 2 numbers, a task where even the 
largest LLMs struggle

What can be done?

- Provide tools to LLMs 

- ➜ Compound AI Systems (CAIS)

ChatGPT
Call a tool 

(calculator)

Can Unsupervised Data Alone Reach High MTBF?
Calculators



Relying on different sensor modalities is a well-established methodology for increasing MTBF

The question: How to fuse the different sensors?

The “end-to-end approach”: Just feed all sensors into one big network and train it

“The Shortcut Learning Problem” 

When different input modalities have different sample complexities, end-to-end Stochastic Gradient 
Descent struggles in leveraging the advantages of all modalities

Can Unsupervised Data Alone Reach High MTBF?
Shortcut Learning Problem



Consider 3 types of sensors

Suppose that each system has inherent limitations that cause a failure probability of 𝜖, where 𝜖 is 
small (e.g., one in 1000 hours)

Additionally, assume that the failures of the different sensors are independent

We compare two options

- Low level, end-to-end, fusion (train a system based on the combined input)

- CAIS: Decomposable training of a system per each modality, followed by high-level fusion

Which option is better?

Camera Radar Lidar

Can Unsupervised Data Alone Reach High MTBF?
Shortcut Learning Problem



Distribution: all variables are over {+1, -1}, and data is created by the following simple generative model:

𝑦~B
1

2
, r1, r2, r3~i. i. d. B 𝜖 , 𝑥1 = 𝑦 𝑟1, 𝑥2 = 𝑦 𝑟2, 𝑥4, 𝑥5 ~𝑖. 𝑖. 𝑑. 𝐵

1

2
, 𝑥3 = 𝑦 𝑟3 𝑥4 𝑥5

This is a simple model of fusion between Lidar, Radar, Camera systems with the following properties:

- The 3 systems have uncorrelated errors (modeled by r1, r2, r3) of level 𝜖

- 𝑥1 and 𝑥2 are ”simpler” systems (modeling radar and lidar), while the product of 𝑥3 𝑥4 𝑥5 equals to 𝑦 𝑟3, and 
therefore is a “complicated to learn” system (modeling the camera)  

Theorem: 

- Can easily reach error of  𝑂(𝜖2) with decomposable training of 1-hidden-layer FCN + majority

- End-to-end SGD training will be “stuck” at an error of 𝜖 for T/𝜖 where T is the time complexity of learning the 
complicated system (camera) individually

Shortcut Learning Problem: A Simple Synthetic Example

What happened? Isn’t end-to-end always better?
Shortcut learning problem: End-to-end SGD struggles to leverage systems with different sample complexities  



In the optimistic scenario, a few rare events reduce the probability mass considerably

In the pessimistic scenario, each rare event has minimal impact on the probability mass

Events

P(event)

Pessimistic Scenario
Too many rare events where each does not 
reduce P(event) noticeably 

Optimal Scenario

Can Unsupervised Data Alone Reach High MTBF?
The Long Tail Problem



- TeslaFSDtracker indicates that reducing variance solely through a data pipeline results in incremental progress

*teslafsdtracker.com - public data on Tesla's recent 12.5.x
https://insideevs.com/news/735038/tesla-fsd-occasionally-dangerously-inept-independent-test/

Long Tail of Tesla FSD



Sensors AI Approach Cost Modularity
Geographic 
Scalability

MTBF

Waymo Lidar-centric CAIS ?

Tesla Camera only End-to-end ?

Mobileye Camera-centric CAIS ?

How to Solve Autonomy



Bias (‘approximation error’)

The learning system cannot reflect the full richness of reality

Variance (‘generalization error’)

The learning system overfits to the observed data, and fails to generalize to 
unseen examples

The Bias-Variance Tradeoff in Machine Learning

Total error

Abstraction Injections

Error

Variance Bias

ε
Total error



Reaching Sufficient MTBFAV Alignment

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

RSS

Separates correct from incorrect

Redundancies

Mobileye Compound AI System (CAIS)

Sensors Algo
High level 

fusion



Extremely 
Efficient AI
(Shai will cover)

PGF

Reaching Sufficient MTBFAV Alignment

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Redundancies

Sensors Algo
High level 

fusion

Mobileye Compound AI System (CAIS)

RSS

Separates correct from incorrect



Consider a simple case

We are following a lead vehicle, and we have 3 sensors

If there are contradictions between the sensors, where some dictate a strong braking while 
others not, what should we do?

Majority: 2 out of 3 (2oo3)

Property of majority
-If each modality has an error probability of at most ϵ, and the errors are independent, then 

majority vote has an error probability of O(ϵ2)

Camera

Radar

Lidar

High Level Fusion: How to Perform



Now consider 3 systems, each one predicts where is our lane

Majority is not defined for non-binary decisions, so what can be done?

Majority is Not Always Applicable



We propose a general approach for generalizing the majority rule to non binary decisions

We build 3 systems

The Primary-Guardian-Fallback (PGF) Fusion

Fusion:

- If Guardian dictates Primary is valid, choose valid

- Otherwise, choose Fallback

- Primary (P) – Predicts where the lane is

- Guardian (G) – Checks if the prediction of the primary 
system is valid or not

- Fallback (F) - Predicts where the lane is

Theorem: The PGF has the same property of the majority rule

If the failure probability of each system is at most 𝜖 and these probabilities are independent, then the fused 
system has an error of 𝑂(𝜖2)





Extremely 
Efficient AI

Reaching Sufficient MTBFAV Alignment

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Redundancies

Sensors Algo
High level 

fusion

Mobileye Compound AI System (CAIS)

RSS

Separates correct from incorrect



Transformers for Sensing and Planning at x100 efficiency

Inference chip (EyeQ6H): Design for efficiency

Efficient labeling by Auto Ground Truth

Efficient modularity by teacher-student architecture

Extremely Efficient AI



Machine Learning

Deep Learning

Generative AI

Universal Learning

Sim2Real

Prologue

6 AI Revolutions

Reasoning

Transformers



Pre-Transformers: Object Detection Pipeline

Clustering and max 
suppression

2D to 3D



Three Revolutions of
Generative Pretrained Transformers (GPTs)

Tokenize everything

Generative, Auto-regressive

Transformer architecture: ’Attention is all you need’



Three Revolutions of Generative Pretrained Transformers

01 Tokenize everything

Input:      Transcribe each input modality (e.g., text, images) into a sequence of tokens

Output: Transcribe each output modality as a sequence of tokens and employ generative, 
auto-regressive models with suitable loss function

Accommodates: Complex input and output structures (e.g., sets, sequences, trees)

Object detection pipeline example:

Input
Single image

’Tokenized’ input
Sequence of image patches

‘Tokenized’ output
Sequence of 4 coordinates determining the 

location of the objects in the image



Generative, Auto-regressive

Previous approach: Classification or regression with fixed, small size, outputs (e.g., ImageNet)

Current approach: Learn probabilities for sequences of arbitrary length (e.g., sentence 
generation)

Key Features: Chain Rule – Models sequence dependencies

Generative – Fits data using maximum likelihood

Enables: Self-supervision (e.g., future words in a document)

Handles uncertainty (multiple valid outputs by learning P[𝑦|𝑥])

02
Three Revolutions of Generative Pretrained Transformers



Example: Consider a 1000x1000 pixel image containing 4 vehicles, with the image divided into 10x10 
pixel patches. What are the probabilities for identifying vehicle positions when not using the chain rule 
compared to when using the chain rule?

List of 4 coordinates per vehicle 𝑥1,1, 𝑦1,1, 𝑥1,2, 𝑦1,2, … . , 𝑥4,1, 𝑦4,1, 𝑥4,2, 𝑦4,2

Without using the chain rule
𝑃 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠|𝐼 = 𝑃 𝑥1,1, 𝑦1,1, 𝑥1,2, 𝑦1,2, … . , 𝑥4,1, 𝑦4,1, 𝑥4,2, 𝑦4,2|𝐼

Dim= 1032

Using the chain rule
𝑃 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠|𝐼
= 𝑃 𝑥1,1|𝐼 ∗ 𝑃 𝑦1,1|𝑥1,1, 𝐼 ∗ ⋯∗ 𝑃 𝑦4,2|𝑥1,1, … , 𝑥4,2, 𝐼

Dim = 100

Three Revolutions of Generative Pretrained Transformers



03 Transformer architecture: ’Attention is all you need’

Tailored for problem of predicting 𝑃 𝑡𝑜𝑘𝑒𝑛𝑛+1 𝑡𝑜𝑘𝑒𝑛𝑛, 𝑡𝑜𝑘𝑒𝑛𝑛−1, … , 𝑡𝑜𝑘𝑒𝑛0]

Transformer layer

Self-reflection

Self-attention

.  .  . 

.  .  . 

.  .  . 

FCN FCN FCN FCN FCN FCN FCN

𝑛

Three Revolutions of Generative Pretrained Transformers



Transformers Layer: Group Thinking Analogy

Imagine a team discussing a project

- Each person has their own area of expertise

- they all contribute to the overall outcome

- Everyone is working simultaneously rather than one after another

Self-attention

Each member listens to others and responds in 
real-time, adjusting their input based on 

important points raised

Self-reflection

Each participant takes time alone to process ideas 
and organize their thoughts

Does anyone see a 
close truck on our 

left side?
No

I have no 
idea

I partially saw a 
very big wheel

Something is 
fully blocking 

my view, maybe 
a truck



Transformers Layer: Self-Reflection

FCN

.  .  . 

Self-reflection

Input

FCN

.  .  . 

Self-reflection

FCN

.  .  . 

Self-reflection

.  .  . 

𝑛

𝑑

Output

𝑑2𝑛

- Each token individually processes its ‘knowledge’ using a multi-layer-perceptron, without 
interacting with other tokens



Transformers Layer: Self-Attention

Example from the Group Thinking Analogy

Person 𝑖 asks: “Does anyone knows something about x?”

Person 𝑗 responds: “Yes, I have what to say about it”

Person 𝑗′ responds: ”No, I don’t know anything about it”

Query Key Value Query Key Value Query Key Value

.  .  . 

Relevancy

Q
u

es
ti

o
n

s

i,j

.  .  . 

.  .  . 
.  .  
. 

.  .  . 

.  .  . 

.  .  . 

.  .  
. 

𝑞𝑢𝑒𝑟𝑦𝑖
𝑘𝑒𝑦𝑗

𝑛2𝑑

- Each token send ‘query’ to the other tokens, which respond with values if their ‘key’ match the ‘query’

- The querying token then averages the received values, facilitating inter-token connectivity

Does anyone 
know something 

about x?

Yes, I have 
what to say 

about it

No, I don’t 
know anything 

about it



Transformers Layer: Self-Attention

Normalizes Scores: It converts raw attention scores into normalized probabilities

Probability Distribution: Each set of attention scores is transformed so that their probabilities sum to 1

Focus Mechanism: This allows the model to weigh different parts of the input differently, focusing more on 
relevant parts based on the probabilities

𝛼𝑖,𝑗

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

Normalize 
each row by 

SoftMax

Indicates how much 𝑖
wants to pay attention to 𝑗

Message 𝑖 gets from the group



𝑗

𝛼𝑖,𝑗𝑉𝑗
i,j

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 



Transformers: Complexity

𝑳 ∗ (𝒏 𝒅𝟐 + 𝒏𝟐𝒅)

Self 
reflection

Self 
attention

Cost per layer for alternative architectures:

Fully Connected Network (FCN)

Flatten 𝑛𝑑 values

Connections: 𝐝𝟐𝒏𝟐

.  .  . 

.  .  . 

Input

Output

Recurrent Neural Network (RNN)

‘Talks’ only with previous token

Connections: 𝒏𝒅𝟐

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

.  .  . 

#layers



‘Effective Sparsity’ of Transformers

Fully Connected Network (FCN)
Convolutional Neural 

Networks (CNNs)

Long-Short-Term-Memory 
(LSTM)

Recurrent Neural Networks 
(RNN)

𝑑2𝑛2 Connections Sparsity specific to images Markov sparsity context
represented by a state vector

Denser, but effectively selects 
only a few past tokens for 

communication
Any modality

Sparser
𝑑2𝑛 + 𝑛2𝑑

Transformers



The 3 Revolutions Enable a Universal Solution

Handle all types of inputs

Deals with uncertainty (by learning probability)

Enables all types of outputs

The ultimate learning machine?



A Transformer End-to-end Object Detection Network

Input: images Output: all objects



A Transformer End-to-end Object Detection Network

The 5 “Multi” problems

- Universality of Transformers

- Encode image patches (from different cameras, different frames, and different resolutions) as 

tokens

- Encode objects as a sequence of tokens (for each object: position, velocity, dimensions, type)

- Apply a Transformer to generate the probability of output tokens given input tokens in an Auto-

Regressive manner

Multi-lanes: needs to assign objects to relevant lanes / 

crosswalks
Multi-frame: : from multiple time stamps

Multi-object: needs to output all (vehicles, 

pedestrians, hazards, …)

Multi-camera: surround
Multi-scale: needs to detect far and close objects at 

different resolutions



Network Architecture: Vanilla Transformer

- CNN backbone for creating image tokens: 

𝐶 = 32 high resolution images are converted to 32 images of resolution 20x15 yielding 𝑁𝑝

= 300 “𝑝𝑖𝑥𝑒𝑙𝑠” per image, and 𝑑 = 256 channels

- Encoder:

- We have 𝑁 = 𝐶 ∗ 𝑁𝑝 = 9600 “𝑖𝑚𝑎𝑔𝑒 𝑡𝑜𝑘𝑒𝑛𝑠”, each at dimension 𝑑 = 256

- A vanilla transformer network with L layers requires 𝑂(𝐿 ∗ 𝑁2𝑑 + 𝑑2𝑁 )

- Encoder alone requires around 100 TOPs (assuming 10Hz, L=32)

- Decoder:

- Predict a sequence of tokens representing all the objects (hundreds of tokens)

- A vanilla AR decoding is sequential, and with KV cache, each iteration involves compute of 
at least 𝑂(𝐿𝑁𝑑) per token prediction (but the real issue is IO of 𝐿𝑁𝑑 here)

- Around 100Mb per token prediction!



Transformers are a brute force approach with limited way to utilize prior knowledge

This is the “dark side” of universality

Self-connectivity: 𝒏𝒅𝟐 Inter-connectivity: 𝒏𝟐𝒅

𝑛2𝑑

In AV 𝑛 ≈ 104 ,which 
becomes a bottleneck

Vanilla Transformers are Not Effiecient 

GPT3

𝑑 = 12288 𝑛 = 2048

𝒏𝒅𝟐 = 317𝑩

We pay both

- Sample complexity (𝑑 is large as it needs to handle all the information in each token)

- Computational complexity of inference (𝑛, 𝑑 are large)

- (both issues are known in the literature, and general mitigations such as “mixture-of-
experts” and “state-space-models” were proposed)



Questionable whether it can reach sufficiently high MTBF

- Misses important abstractions and therefore doesn’t generalize well

- The Shortcut Learning Problem

What About End-to-End From Pixels to Control Commands

01

Weaknesses of transformers

Brute force

02 The learning objective (of learning P 𝑦 𝑥 ) prefers ‘common & incorrect’ 𝒚
over 'rare & correct’ 𝒚

03

04 (as part of CAIS, our e2e architecture has an additional head that outputs control 
commands directly as well, which is fine as a low MTBF redundant component) 



Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Reaching Sufficient MTBFAV Alignment

Redundancies

Sensors Algo
High level 

fusion

Mobileye Compound AI System (CAIS)

Implications

- Must output Sensing State

- Each subsystem must be super efficient because we don’t have a single system

RSS

Separates correct from incorrect



Extremely Efficient AI
Transformers for Sensing and Planning at x100 efficiency



STAT: Sparse Typed Attention

Vanilla transformer: 𝑛2𝑑 + d2n

STAT:

- Token Types: Each token has a “type”

- Dimensionality: of embeddings and self-reflection matrices may vary based on the token type.

- Token Connectivity: The connectivity between tokens is sparse and depends on their types

- Link Tokens: We add “link” tokens for controlling the connectivity

- Inference Efficiency: For our end-to-end object detection task, STAT is x100 faster at inference 

time and at the same time slightly improves performance



STAT: Sparse Typed Attention
Vanilla transformer: 𝑛2𝑑 + d2n

STAT Encoder for Object Detection:

- Token types:

- Image tokens: recall, we have 𝐶 = 32 images each with 

𝑁𝑝 = 300 “𝑝𝑖𝑥𝑒𝑙𝑠” , yielding 9600 image tokens

- We add  𝑁𝐿 = 32 “𝐿𝑖𝑛k” tokens per image

- STAT Block: 

- Within each image, Cross Attention between the 300 image tokens 
and the 32 link tokens (𝐶 ∗ 𝑁𝑝 ∗ 𝑁𝐿 ∗ 𝑑)

- Across images, full self attention between all link tokens
𝐶 ∗ 𝑁𝐿

2𝑑

- Compared to 𝐶 ∗ 𝑁𝑝
2
𝑑 in vanilla transformers, we get a factor 

improvement of (
𝑁𝑝

𝑁𝐿
) ∗ min(𝐶,

𝑁𝑝

𝑁𝐿
) , which is approximately x100 

faster in our case 

- Performance: For our end-to-end object detection task, STAT is not only 
x100, but also improves performance (we enlarge the expressivity of the 
network while making it much faster at inference time)

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . ..  .  .

𝐶 = 32 𝑖𝑚𝑎𝑔𝑒𝑠

Cross attention

32 Link tokens

. . .

. . .

300 image tokens

Cross image

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

.  .  .



Parallel Auto-Regressive (PAR)

We need to detect all objects in the scene: What is the order?

Auto-Regressive: It doesn’t matter due to the chain rule !

Price of sequential decoding

- Sequential decoding is costly on all modern deep learning chips (due to IO)

- We added un-needed ”fake uncertainty” (what is the order)

DeTR (DETection Transformer, Facebook AI, May 2020)

- Output all objects in parallel
- Hungarian matching to determine the relative order between 

the network’s predictions and the order of the ground truth

- Problem: Doesn’t deal well with true uncertainty

- The “truck and trailer” problem

- Streets which can be 1 or 2 lanes, etc.

”Truck and trailer” problem

Paris streets



Parallel Auto-Regressive (PAR)

- The decoder contains query heads which 

perform cross attention with the encoder’s link 

tokens entirely in parallel

- Each query head outputs, auto-regressively, 

0/1/2 objects (independently and in parallel to 

the other query heads) 

- ➜ dealing only with “true uncertainties” and 

not with “fake uncertainties”

Input images

CNN Tokenization

STAT Encoder

Query heads

Output tokens



Machine Learning

Deep Learning

Generative AI

Universal Learning

Sim2Real

Intermediate Summary

Reasoning

Transformers

Transformers revolutionized AI

- The good 

- Universal, generative, AI

- The bad

- Can’t separate “correct & rare” from “wrong & common”

- Miss important abstractions

- Questionable when very high accuracy is required

- The ugly

- Brute force approach, unnecessarily expensive

Working smarter with transformers

- STAT: x100 faster & better accuracy

- PAR: x10 faster & embrace uncertainty only when it is needed



Extremely Efficient AI

Inference chip (EyeQ6H): Design for efficiency



Hardware Architectures Tradeoff: Flexibility vs. Efficiency

Flexibility General purposeSpecial purpose
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EyeQ6 High: 5 Distinct Architectures

Flexibility General purposeSpecial purpose
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XNN

MIPS

VMP

MPC

PMA

EyeQ6H - Address Mobileye’s high efficiency and 

flexibility needs

- Enable accelerating range of parallel 

compute paradigms



5 Distinct Architectures: Enhanced Parallel Processing

MIPS
- A general-purpose CPU

MPC
- A CPU specialized for thread level parallelism

VMP
- Very-Long-Instruction-Width (VLIW) – Single-Instruction-Multiple-Data (SIMD)
- Designed for data-level parallelism of fixed points arithmetic (e.g., converge the 12-bit raw image into 

a set of 8-bit images of different resolutions and tone-maps)
- Basically, performs operations on vectors of integers

PMA
- Coarse-Grain-Reconfigurable-Array (CGRA)
- Designed for data-level parallelism including floating point arithmetic
- Basically, performs operations on vectors of floats

XNN
- Dedicated to fixed functions for deep learning: convolutions, matrix-multiplication/fully-connect, and 

related activation post-processing computations: Excels in CNNs, FCNs, Transformers 



EyeQ6H vs. EyeQ5H: 2x in TOPS, But 10x in FPS!
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EyeQ5H EyeQ6H

16 TOPS (int 8)

27W (max)

34 TOPS (int 8)

33W (max)



EyeQ6H vs. Orin: It’s Not All About TOPS

Conclusion

- TOPS are a poor measure for compute capabilities

34 TOPS (int8) 275 TOPS (int8)
Factor x8

Theoretical TOPS

Frames per Second for ResNet50

Only factor x2



End-to-End Sensing State 
Network

XNN

Par DecoderVMP

STAT

Encoder

32 images

. . .

. . .

CNN 
Tokenizer

XNN



Extremely Efficient AI

Efficient labeling by Auto Ground Truth



Automatic Ground Truth: CAIS vs. End-to-End

Compound AI System

- Injecting abstractions: Sensing State, RSS, 

PGF, etc.

- Need to label data: Normally does through 

supervised learning

Amount of supervision HighLow

D
at

a 
n

e
ed

e
d

End-to-end

CAISUsing AutoGT

Lo
w

H
ig

h

End-to-end solution

- Much more data

- Unsupervised 



Automatic Ground Truth: How to Reduce #Labels

Easier problem to solve

- Since the future is known

- Kinematics become easier

- Circumvent temporary occlusions

- Can focus on short range + tracking

- Powerful (expensive) sensor (e.g., 360° Lidar)

Offline compute

- Train foundation model on large unsupervised data

- Supervised fine tuning on a smaller number of labels

The future is known



Automatic Ground Truth: Foundation Model



Automatic Ground Truth

Final Product



Extremely Efficient AI

Efficient modularity by teacher-student architecture



Designing for a Modular Product Portfolio
While Leveraging Data Across All Products

Mobileye’s technology path: Modularity

Challenge

- How to create a unified development framework that eliminates the need 
for separate stacks for each product?



Designing for a Modular Product Portfolio
While Leveraging Data Across All Products

Offline teacher network

Platform-agnostic

𝑆𝑡𝑢𝑑𝑒𝑛𝑡1 𝑆𝑡𝑢𝑑𝑒𝑛𝑡2 𝑆𝑡𝑢𝑑𝑒𝑛𝑡3 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑘. . .

Teacher ➜ Student

- EyeQNAS (Neural Architecture Search): Determine architecture optimally per each chip

- Distillation: A training framework for imitating the teacher network by a student network



CAIS

AV Alignment

RSS: Separates correct from incorrect

Reaching sufficient MTBF

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Redundancies

Sensors Algo
High level 

fusion

- Transformers for Sensing and Planning at 
x100 efficiency

- Inference chip (EyeQ 6H): design for 
efficiency

- Efficient labeling by Auto Ground Truth

- Efficient modularity by teacher-student 
architecture

Summary

Extremely efficient AI
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