
Navigating The Path to Autonomous
Mobility

Prof. Amnon Shashua, CEO

Prof. Shai Shalev-Schwartz, CTO

- Reaching a real “full self driving” system (eyes-off)

- While maintaining a sustainable business

How to Solve Autonomy

* Subject to defined Operational Design Domain and products specifications

Sensors AI Approach Cost Modularity
Geographic
Scalability

MTBF

Waymo Lidar-centric CAIS ?

Tesla Camera only End-to-end ?

Mobileye Camera-centric CAIS ?

How to Solve Autonomy

Sensors AI Approach Cost Modularity
Geographic
Scalability

MTBF

Waymo Lidar-centric CAIS ?

Tesla Camera only End-to-end ?

Mobileye Camera-centric CAIS ?

Which is more likely
to succeed?

How to Solve Autonomy

Premise Reality

Unsupervised data alone can reach sufficient
MTBF

Glue code shifted to offline
Rare & correct vs. common & incorrect

“AV alignment” problem

Really?
- Calculator
- Shortcut learning problem
- Long tail problem

End-to-End Approach

No glue code

“No Glue Code”: AV Alignment Problem

End-to-end aims to maximize 𝐏 𝒚 𝒙 where 𝒚 is the future trajectory human would take,

denoted 𝒚, given the previous video, denoted 𝒙

This learning objective prefers 'common & incorrect' over 'rare & correct’

Examples:

1. Most drivers slow down at a stop sign but do not come to a full stop

- Rolling stop ≡ common & incorrect

- Full stop ≡ rare & correct

2. “Rude drivers” that cut in line

3. Reckless drivers

This is why RLHF is used in LLMs: the reward mechanism differentiates between ‘correct’ and ‘incorrect’

Glue code shifted to offline

End-to-end learning from data often misses important
abstractions and therefore doesn’t generalize well

Example
Learning to multiply 2 numbers, a task where even the
largest LLMs struggle

Can Unsupervised Data Alone Reach High MTBF?
Calculators

https://x.com/yuntiandeng/status/1836114401213989366

End-to-end learning from data often misses important
abstractions and therefore doesn’t generalize well

Example
Learning to multiply 2 numbers, a task where even the
largest LLMs struggle

What can be done?

- Provide tools to LLMs

- ➜ Compound AI Systems (CAIS)

ChatGPT
Call a tool

(calculator)

Can Unsupervised Data Alone Reach High MTBF?
Calculators

Relying on different sensor modalities is a well-established methodology for increasing MTBF

The question: How to fuse the different sensors?

The “end-to-end approach”: Just feed all sensors into one big network and train it

“The Shortcut Learning Problem”

When different input modalities have different sample complexities, end-to-end Stochastic Gradient
Descent struggles in leveraging the advantages of all modalities

Can Unsupervised Data Alone Reach High MTBF?
Shortcut Learning Problem

Consider 3 types of sensors

Suppose that each system has inherent limitations that cause a failure probability of 𝜖, where 𝜖 is
small (e.g., one in 1000 hours)

Additionally, assume that the failures of the different sensors are independent

We compare two options

- Low level, end-to-end, fusion (train a system based on the combined input)

- CAIS: Decomposable training of a system per each modality, followed by high-level fusion

Which option is better?

Camera Radar Lidar

Can Unsupervised Data Alone Reach High MTBF?
Shortcut Learning Problem

Distribution: all variables are over {+1, -1}, and data is created by the following simple generative model:

𝑦~B
1

2
, r1, r2, r3~i. i. d. B 𝜖 , 𝑥1 = 𝑦 𝑟1, 𝑥2 = 𝑦 𝑟2, 𝑥4, 𝑥5 ~𝑖. 𝑖. 𝑑. 𝐵

1

2
, 𝑥3 = 𝑦 𝑟3 𝑥4 𝑥5

This is a simple model of fusion between Lidar, Radar, Camera systems with the following properties:

- The 3 systems have uncorrelated errors (modeled by r1, r2, r3) of level 𝜖

- 𝑥1 and 𝑥2 are ”simpler” systems (modeling radar and lidar), while the product of 𝑥3 𝑥4 𝑥5 equals to 𝑦 𝑟3, and
therefore is a “complicated to learn” system (modeling the camera)

Theorem:

- Can easily reach error of 𝑂(𝜖2) with decomposable training of 1-hidden-layer FCN + majority

- End-to-end SGD training will be “stuck” at an error of 𝜖 for T/𝜖 where T is the time complexity of learning the
complicated system (camera) individually

Shortcut Learning Problem: A Simple Synthetic Example

What happened? Isn’t end-to-end always better?
Shortcut learning problem: End-to-end SGD struggles to leverage systems with different sample complexities

In the optimistic scenario, a few rare events reduce the probability mass considerably

In the pessimistic scenario, each rare event has minimal impact on the probability mass

Events

P(event)

Pessimistic Scenario
Too many rare events where each does not
reduce P(event) noticeably

Optimal Scenario

Can Unsupervised Data Alone Reach High MTBF?
The Long Tail Problem

- TeslaFSDtracker indicates that reducing variance solely through a data pipeline results in incremental progress

*teslafsdtracker.com - public data on Tesla's recent 12.5.x
https://insideevs.com/news/735038/tesla-fsd-occasionally-dangerously-inept-independent-test/

Long Tail of Tesla FSD

Sensors AI Approach Cost Modularity
Geographic
Scalability

MTBF

Waymo Lidar-centric CAIS ?

Tesla Camera only End-to-end ?

Mobileye Camera-centric CAIS ?

How to Solve Autonomy

Bias (‘approximation error’)

The learning system cannot reflect the full richness of reality

Variance (‘generalization error’)

The learning system overfits to the observed data, and fails to generalize to
unseen examples

The Bias-Variance Tradeoff in Machine Learning

Total error

Abstraction Injections

Error

Variance Bias

ε
Total error

Reaching Sufficient MTBFAV Alignment

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

RSS

Separates correct from incorrect

Redundancies

Mobileye Compound AI System (CAIS)

Sensors Algo
High level

fusion

Extremely
Efficient AI
(Shai will cover)

PGF

Reaching Sufficient MTBFAV Alignment

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Redundancies

Sensors Algo
High level

fusion

Mobileye Compound AI System (CAIS)

RSS

Separates correct from incorrect

Consider a simple case

We are following a lead vehicle, and we have 3 sensors

If there are contradictions between the sensors, where some dictate a strong braking while
others not, what should we do?

Majority: 2 out of 3 (2oo3)

Property of majority
-If each modality has an error probability of at most ϵ, and the errors are independent, then

majority vote has an error probability of O(ϵ2)

Camera

Radar

Lidar

High Level Fusion: How to Perform

Now consider 3 systems, each one predicts where is our lane

Majority is not defined for non-binary decisions, so what can be done?

Majority is Not Always Applicable

We propose a general approach for generalizing the majority rule to non binary decisions

We build 3 systems

The Primary-Guardian-Fallback (PGF) Fusion

Fusion:

- If Guardian dictates Primary is valid, choose valid

- Otherwise, choose Fallback

- Primary (P) – Predicts where the lane is

- Guardian (G) – Checks if the prediction of the primary
system is valid or not

- Fallback (F) - Predicts where the lane is

Theorem: The PGF has the same property of the majority rule

If the failure probability of each system is at most 𝜖 and these probabilities are independent, then the fused
system has an error of 𝑂(𝜖2)

Extremely
Efficient AI

Reaching Sufficient MTBFAV Alignment

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Redundancies

Sensors Algo
High level

fusion

Mobileye Compound AI System (CAIS)

RSS

Separates correct from incorrect

Transformers for Sensing and Planning at x100 efficiency

Inference chip (EyeQ6H): Design for efficiency

Efficient labeling by Auto Ground Truth

Efficient modularity by teacher-student architecture

Extremely Efficient AI

Machine Learning

Deep Learning

Generative AI

Universal Learning

Sim2Real

Prologue

6 AI Revolutions

Reasoning

Transformers

Pre-Transformers: Object Detection Pipeline

Clustering and max
suppression

2D to 3D

Three Revolutions of
Generative Pretrained Transformers (GPTs)

Tokenize everything

Generative, Auto-regressive

Transformer architecture: ’Attention is all you need’

Three Revolutions of Generative Pretrained Transformers

01 Tokenize everything

Input: Transcribe each input modality (e.g., text, images) into a sequence of tokens

Output: Transcribe each output modality as a sequence of tokens and employ generative,
auto-regressive models with suitable loss function

Accommodates: Complex input and output structures (e.g., sets, sequences, trees)

Object detection pipeline example:

Input
Single image

’Tokenized’ input
Sequence of image patches

‘Tokenized’ output
Sequence of 4 coordinates determining the

location of the objects in the image

Generative, Auto-regressive

Previous approach: Classification or regression with fixed, small size, outputs (e.g., ImageNet)

Current approach: Learn probabilities for sequences of arbitrary length (e.g., sentence
generation)

Key Features: Chain Rule – Models sequence dependencies

Generative – Fits data using maximum likelihood

Enables: Self-supervision (e.g., future words in a document)

Handles uncertainty (multiple valid outputs by learning P[𝑦|𝑥])

02
Three Revolutions of Generative Pretrained Transformers

Example: Consider a 1000x1000 pixel image containing 4 vehicles, with the image divided into 10x10
pixel patches. What are the probabilities for identifying vehicle positions when not using the chain rule
compared to when using the chain rule?

List of 4 coordinates per vehicle 𝑥1,1, 𝑦1,1, 𝑥1,2, 𝑦1,2, … . , 𝑥4,1, 𝑦4,1, 𝑥4,2, 𝑦4,2

Without using the chain rule
𝑃 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠|𝐼 = 𝑃 𝑥1,1, 𝑦1,1, 𝑥1,2, 𝑦1,2, … . , 𝑥4,1, 𝑦4,1, 𝑥4,2, 𝑦4,2|𝐼

Dim= 1032

Using the chain rule
𝑃 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠|𝐼
= 𝑃 𝑥1,1|𝐼 ∗ 𝑃 𝑦1,1|𝑥1,1, 𝐼 ∗ ⋯∗ 𝑃 𝑦4,2|𝑥1,1, … , 𝑥4,2, 𝐼

Dim = 100

Three Revolutions of Generative Pretrained Transformers

03 Transformer architecture: ’Attention is all you need’

Tailored for problem of predicting 𝑃 𝑡𝑜𝑘𝑒𝑛𝑛+1 𝑡𝑜𝑘𝑒𝑛𝑛, 𝑡𝑜𝑘𝑒𝑛𝑛−1, … , 𝑡𝑜𝑘𝑒𝑛0]

Transformer layer

Self-reflection

Self-attention

. . .

. . .

. . .

FCN FCN FCN FCN FCN FCN FCN

𝑛

Three Revolutions of Generative Pretrained Transformers

Transformers Layer: Group Thinking Analogy

Imagine a team discussing a project

- Each person has their own area of expertise

- they all contribute to the overall outcome

- Everyone is working simultaneously rather than one after another

Self-attention

Each member listens to others and responds in
real-time, adjusting their input based on

important points raised

Self-reflection

Each participant takes time alone to process ideas
and organize their thoughts

Does anyone see a
close truck on our

left side?
No

I have no
idea

I partially saw a
very big wheel

Something is
fully blocking

my view, maybe
a truck

Transformers Layer: Self-Reflection

FCN

. . .

Self-reflection

Input

FCN

. . .

Self-reflection

FCN

. . .

Self-reflection

. . .

𝑛

𝑑

Output

𝑑2𝑛

- Each token individually processes its ‘knowledge’ using a multi-layer-perceptron, without
interacting with other tokens

Transformers Layer: Self-Attention

Example from the Group Thinking Analogy

Person 𝑖 asks: “Does anyone knows something about x?”

Person 𝑗 responds: “Yes, I have what to say about it”

Person 𝑗′ responds: ”No, I don’t know anything about it”

Query Key Value Query Key Value Query Key Value

. . .

Relevancy

Q
u

es
ti

o
n

s

i,j

. . .

. . .
. .
.

. . .

. . .

. . .

. .
.

𝑞𝑢𝑒𝑟𝑦𝑖
𝑘𝑒𝑦𝑗

𝑛2𝑑

- Each token send ‘query’ to the other tokens, which respond with values if their ‘key’ match the ‘query’

- The querying token then averages the received values, facilitating inter-token connectivity

Does anyone
know something

about x?

Yes, I have
what to say

about it

No, I don’t
know anything

about it

Transformers Layer: Self-Attention

Normalizes Scores: It converts raw attention scores into normalized probabilities

Probability Distribution: Each set of attention scores is transformed so that their probabilities sum to 1

Focus Mechanism: This allows the model to weigh different parts of the input differently, focusing more on
relevant parts based on the probabilities

𝛼𝑖,𝑗

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Normalize
each row by

SoftMax

Indicates how much 𝑖
wants to pay attention to 𝑗

Message 𝑖 gets from the group

𝑗

𝛼𝑖,𝑗𝑉𝑗
i,j

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Transformers: Complexity

𝑳 ∗ (𝒏 𝒅𝟐 + 𝒏𝟐𝒅)

Self
reflection

Self
attention

Cost per layer for alternative architectures:

Fully Connected Network (FCN)

Flatten 𝑛𝑑 values

Connections: 𝐝𝟐𝒏𝟐

. . .

. . .

Input

Output

Recurrent Neural Network (RNN)

‘Talks’ only with previous token

Connections: 𝒏𝒅𝟐

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

#layers

‘Effective Sparsity’ of Transformers

Fully Connected Network (FCN)
Convolutional Neural

Networks (CNNs)

Long-Short-Term-Memory
(LSTM)

Recurrent Neural Networks
(RNN)

𝑑2𝑛2 Connections Sparsity specific to images Markov sparsity context
represented by a state vector

Denser, but effectively selects
only a few past tokens for

communication
Any modality

Sparser
𝑑2𝑛 + 𝑛2𝑑

Transformers

The 3 Revolutions Enable a Universal Solution

Handle all types of inputs

Deals with uncertainty (by learning probability)

Enables all types of outputs

The ultimate learning machine?

A Transformer End-to-end Object Detection Network

Input: images Output: all objects

A Transformer End-to-end Object Detection Network

The 5 “Multi” problems

- Universality of Transformers

- Encode image patches (from different cameras, different frames, and different resolutions) as

tokens

- Encode objects as a sequence of tokens (for each object: position, velocity, dimensions, type)

- Apply a Transformer to generate the probability of output tokens given input tokens in an Auto-

Regressive manner

Multi-lanes: needs to assign objects to relevant lanes /

crosswalks
Multi-frame: : from multiple time stamps

Multi-object: needs to output all (vehicles,

pedestrians, hazards, …)

Multi-camera: surround
Multi-scale: needs to detect far and close objects at

different resolutions

Network Architecture: Vanilla Transformer

- CNN backbone for creating image tokens:

𝐶 = 32 high resolution images are converted to 32 images of resolution 20x15 yielding 𝑁𝑝

= 300 “𝑝𝑖𝑥𝑒𝑙𝑠” per image, and 𝑑 = 256 channels

- Encoder:

- We have 𝑁 = 𝐶 ∗ 𝑁𝑝 = 9600 “𝑖𝑚𝑎𝑔𝑒 𝑡𝑜𝑘𝑒𝑛𝑠”, each at dimension 𝑑 = 256

- A vanilla transformer network with L layers requires 𝑂(𝐿 ∗ 𝑁2𝑑 + 𝑑2𝑁)

- Encoder alone requires around 100 TOPs (assuming 10Hz, L=32)

- Decoder:

- Predict a sequence of tokens representing all the objects (hundreds of tokens)

- A vanilla AR decoding is sequential, and with KV cache, each iteration involves compute of
at least 𝑂(𝐿𝑁𝑑) per token prediction (but the real issue is IO of 𝐿𝑁𝑑 here)

- Around 100Mb per token prediction!

Transformers are a brute force approach with limited way to utilize prior knowledge

This is the “dark side” of universality

Self-connectivity: 𝒏𝒅𝟐 Inter-connectivity: 𝒏𝟐𝒅

𝑛2𝑑

In AV 𝑛 ≈ 104 ,which
becomes a bottleneck

Vanilla Transformers are Not Effiecient

GPT3

𝑑 = 12288 𝑛 = 2048

𝒏𝒅𝟐 = 317𝑩

We pay both

- Sample complexity (𝑑 is large as it needs to handle all the information in each token)

- Computational complexity of inference (𝑛, 𝑑 are large)

- (both issues are known in the literature, and general mitigations such as “mixture-of-
experts” and “state-space-models” were proposed)

Questionable whether it can reach sufficiently high MTBF

- Misses important abstractions and therefore doesn’t generalize well

- The Shortcut Learning Problem

What About End-to-End From Pixels to Control Commands

01

Weaknesses of transformers

Brute force

02 The learning objective (of learning P 𝑦 𝑥) prefers ‘common & incorrect’ 𝒚
over 'rare & correct’ 𝒚

03

04 (as part of CAIS, our e2e architecture has an additional head that outputs control
commands directly as well, which is fine as a low MTBF redundant component)

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Reaching Sufficient MTBFAV Alignment

Redundancies

Sensors Algo
High level

fusion

Mobileye Compound AI System (CAIS)

Implications

- Must output Sensing State

- Each subsystem must be super efficient because we don’t have a single system

RSS

Separates correct from incorrect

Extremely Efficient AI
Transformers for Sensing and Planning at x100 efficiency

STAT: Sparse Typed Attention

Vanilla transformer: 𝑛2𝑑 + d2n

STAT:

- Token Types: Each token has a “type”

- Dimensionality: of embeddings and self-reflection matrices may vary based on the token type.

- Token Connectivity: The connectivity between tokens is sparse and depends on their types

- Link Tokens: We add “link” tokens for controlling the connectivity

- Inference Efficiency: For our end-to-end object detection task, STAT is x100 faster at inference

time and at the same time slightly improves performance

STAT: Sparse Typed Attention
Vanilla transformer: 𝑛2𝑑 + d2n

STAT Encoder for Object Detection:

- Token types:

- Image tokens: recall, we have 𝐶 = 32 images each with

𝑁𝑝 = 300 “𝑝𝑖𝑥𝑒𝑙𝑠” , yielding 9600 image tokens

- We add 𝑁𝐿 = 32 “𝐿𝑖𝑛k” tokens per image

- STAT Block:

- Within each image, Cross Attention between the 300 image tokens
and the 32 link tokens (𝐶 ∗ 𝑁𝑝 ∗ 𝑁𝐿 ∗ 𝑑)

- Across images, full self attention between all link tokens
𝐶 ∗ 𝑁𝐿

2𝑑

- Compared to 𝐶 ∗ 𝑁𝑝
2
𝑑 in vanilla transformers, we get a factor

improvement of (
𝑁𝑝

𝑁𝐿
) ∗ min(𝐶,

𝑁𝑝

𝑁𝐿
) , which is approximately x100

faster in our case

- Performance: For our end-to-end object detection task, STAT is not only
x100, but also improves performance (we enlarge the expressivity of the
network while making it much faster at inference time)

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

.

𝐶 = 32 𝑖𝑚𝑎𝑔𝑒𝑠

Cross attention

32 Link tokens

. . .

. . .

300 image tokens

Cross image

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

32 Link tokens

. . .

. . .

300 image tokens

. . .

Parallel Auto-Regressive (PAR)

We need to detect all objects in the scene: What is the order?

Auto-Regressive: It doesn’t matter due to the chain rule !

Price of sequential decoding

- Sequential decoding is costly on all modern deep learning chips (due to IO)

- We added un-needed ”fake uncertainty” (what is the order)

DeTR (DETection Transformer, Facebook AI, May 2020)

- Output all objects in parallel
- Hungarian matching to determine the relative order between

the network’s predictions and the order of the ground truth

- Problem: Doesn’t deal well with true uncertainty

- The “truck and trailer” problem

- Streets which can be 1 or 2 lanes, etc.

”Truck and trailer” problem

Paris streets

Parallel Auto-Regressive (PAR)

- The decoder contains query heads which

perform cross attention with the encoder’s link

tokens entirely in parallel

- Each query head outputs, auto-regressively,

0/1/2 objects (independently and in parallel to

the other query heads)

- ➜ dealing only with “true uncertainties” and

not with “fake uncertainties”

Input images

CNN Tokenization

STAT Encoder

Query heads

Output tokens

Machine Learning

Deep Learning

Generative AI

Universal Learning

Sim2Real

Intermediate Summary

Reasoning

Transformers

Transformers revolutionized AI

- The good

- Universal, generative, AI

- The bad

- Can’t separate “correct & rare” from “wrong & common”

- Miss important abstractions

- Questionable when very high accuracy is required

- The ugly

- Brute force approach, unnecessarily expensive

Working smarter with transformers

- STAT: x100 faster & better accuracy

- PAR: x10 faster & embrace uncertainty only when it is needed

Extremely Efficient AI

Inference chip (EyeQ6H): Design for efficiency

Hardware Architectures Tradeoff: Flexibility vs. Efficiency

Flexibility General purposeSpecial purpose

Ef
fi

ci
en

cy
Lo

w

e
ff

ic
ie

n
cy

H
ig

h

e
ff

ic
ie

n
cy

Fixed-function

CPU

GPU

EyeQ6 High: 5 Distinct Architectures

Flexibility General purposeSpecial purpose

Ef
fi

ci
en

cy
Lo

w

e
ff

ic
ie

n
cy

H
ig

h

e
ff

ic
ie

n
cy

XNN

MIPS

VMP

MPC

PMA

EyeQ6H - Address Mobileye’s high efficiency and

flexibility needs

- Enable accelerating range of parallel

compute paradigms

5 Distinct Architectures: Enhanced Parallel Processing

MIPS
- A general-purpose CPU

MPC
- A CPU specialized for thread level parallelism

VMP
- Very-Long-Instruction-Width (VLIW) – Single-Instruction-Multiple-Data (SIMD)
- Designed for data-level parallelism of fixed points arithmetic (e.g., converge the 12-bit raw image into

a set of 8-bit images of different resolutions and tone-maps)
- Basically, performs operations on vectors of integers

PMA
- Coarse-Grain-Reconfigurable-Array (CGRA)
- Designed for data-level parallelism including floating point arithmetic
- Basically, performs operations on vectors of floats

XNN
- Dedicated to fixed functions for deep learning: convolutions, matrix-multiplication/fully-connect, and

related activation post-processing computations: Excels in CNNs, FCNs, Transformers

EyeQ6H vs. EyeQ5H: 2x in TOPS, But 10x in FPS!

0

200

400

600

800

1000

1200

Pixel Labeling Road Multi Object
Detection

Weighted Average

91
126

82
25

1062

1151

975

252

EyeQ6H

EyeQ5H

Fr
am

e
s

p
er

Se

co
n

d

Neural Network

EyeQ5H EyeQ6H

16 TOPS (int 8)

27W (max)

34 TOPS (int 8)

33W (max)

EyeQ6H vs. Orin: It’s Not All About TOPS

Conclusion

- TOPS are a poor measure for compute capabilities

34 TOPS (int8) 275 TOPS (int8)
Factor x8

Theoretical TOPS

Frames per Second for ResNet50

Only factor x2

End-to-End Sensing State
Network

XNN

Par DecoderVMP

STAT

Encoder

32 images

. . .

. . .

CNN
Tokenizer

XNN

Extremely Efficient AI

Efficient labeling by Auto Ground Truth

Automatic Ground Truth: CAIS vs. End-to-End

Compound AI System

- Injecting abstractions: Sensing State, RSS,

PGF, etc.

- Need to label data: Normally does through

supervised learning

Amount of supervision HighLow

D
at

a
n

e
ed

e
d

End-to-end

CAISUsing AutoGT

Lo
w

H
ig

h

End-to-end solution

- Much more data

- Unsupervised

Automatic Ground Truth: How to Reduce #Labels

Easier problem to solve

- Since the future is known

- Kinematics become easier

- Circumvent temporary occlusions

- Can focus on short range + tracking

- Powerful (expensive) sensor (e.g., 360° Lidar)

Offline compute

- Train foundation model on large unsupervised data

- Supervised fine tuning on a smaller number of labels

The future is known

Automatic Ground Truth: Foundation Model

Automatic Ground Truth

Final Product

Extremely Efficient AI

Efficient modularity by teacher-student architecture

Designing for a Modular Product Portfolio
While Leveraging Data Across All Products

Mobileye’s technology path: Modularity

Challenge

- How to create a unified development framework that eliminates the need
for separate stacks for each product?

Designing for a Modular Product Portfolio
While Leveraging Data Across All Products

Offline teacher network

Platform-agnostic

𝑆𝑡𝑢𝑑𝑒𝑛𝑡1 𝑆𝑡𝑢𝑑𝑒𝑛𝑡2 𝑆𝑡𝑢𝑑𝑒𝑛𝑡3 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑘. . .

Teacher ➜ Student

- EyeQNAS (Neural Architecture Search): Determine architecture optimally per each chip

- Distillation: A training framework for imitating the teacher network by a student network

CAIS

AV Alignment

RSS: Separates correct from incorrect

Reaching sufficient MTBF

Abstractions
- Sense / Plan / Act

- Analytic calculations: RSS, time-to-contact…

Redundancies

Sensors Algo
High level

fusion

- Transformers for Sensing and Planning at
x100 efficiency

- Inference chip (EyeQ 6H): design for
efficiency

- Efficient labeling by Auto Ground Truth

- Efficient modularity by teacher-student
architecture

Summary

Extremely efficient AI

	Slide 1: Navigating The Path to Autonomous Mobility
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Hardware Architectures Tradeoff: Flexibility vs. Efficiency
	Slide 52: EyeQ6 High: 5 Distinct Architectures
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

